Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Jun Han,^a* Shu-Ping Yang,^b Da-Qi Wang^c and Hai-Tao Xia^b

^aDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: hanlijun@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.030 wR factor = 0.080 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[*N*,*N*'-bis(3,4-methylenedioxybenzyl)propane-1,3-diamine]dichlorozinc(II)

The title complex, $[ZnCl_2(C_{19}H_{22}N_2O_4)]$, is a mononuclear compound; the central zinc ion is coordinated by two Cl⁻ ligands and two N atoms of the bis(3,4-methylenedioxybenzyl)propane-1,3-diamine in a distorted tetrahedral geometry. The complex adopts a 'hawk' conformation. The molecules are linked by pairs of N-H···Cl hydrogen bonds into a $C_2^2(8)C_2^2(8)[R_2^2(8)R_2^2(8)]$ chain of rings along the [001] direction and the molecules are linked by a pair of C-H···O and also by a pair of C-H···Cl hydrogen bonds into a chain of alternating $R_2^2(6)$ rings and $R_2^2(20)$ rings along the [111] direction. The combination of the [111] chain and the [001] chain generates [110] stacks.

Comment

 Zn^{II} complexes have a broad range of biological activities, including inhibition of carbonic anhydrase (CA) (Scozzafava *et al.*, 2001; Puccetti *et al.*, 2005), antibacterial (Zhang *et al.*, 2003) and anti-HIV-1 (Masami Otsuka *et al.*,1997; Wang *et al.*, 2004); the crystal structures of various Zn^{II} complexes have been described (Feinberg *et al.*, 1995; You, 2005; Johansson & Håkansson, 2004). We report here the crystal structure of the title Zn^{II} complex, (I).

Complex (I) is a mononuclear compound (Fig. 1). The central zinc ion is coordinated by two Cl⁻ and two N atoms of N,N'-(3,4-methylenedioxybenzyl)propane-1,3-diamine in a distorted tetrahedral geometry (Table 1). The dihedral angle

© 2006 International Union of Crystallography All rights reserved

The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 3 September 2006 Accepted 11 September 2006

The molecular structure of (I), showing the formation of a [001] chain of rings. For clarity, H atoms not involved in the motif shown have been omitted [symmetry codes: (*) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (#) $x, \frac{1}{2} - y, -\frac{1}{2} + z$; (&) x, y, -1 + z]. Dashed lines indicate hydrogen bonds.

Figure 3

Part of the crystal structure of (I), showing the formation of the the [111] chain of rings. For clarity, H atoms not involved in the motif shown have been omitted [symmetry codes: (*) 1 - x, -y, 1 - z; (#) 2 - x, 1 - y, 2 - z; (&) -1 + x, -1 + y, -1 + z]. Dashed lines indicate hydrogen bonds.

between the N1/Zn1/N2 and Cl1/Zn1/Cl2 planes is $87.40 (6)^{\circ}$. The six-membered ring Zn/N1/N2/C1–C3 has a chair conformation, in which the sum of the internal angles is $656 (1)^{\circ}$ and the dihedral angles between the N1/Zn1/N2 and N1/N2/C3/C1 planes, and the C1/C2/C3 and N1/N2/C3/C1 planes, are,

Figure 4

The packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted.

respectively, 46.1 (1) and 63.1 (3)°. Complex (I) adopts a 'hawk' conformation, and the two 3,4-methylenedioxybenzyl rings are located on opposite sides of the six-membered ring; the two benzene rings enclose a dihedral angle of 76.2 (1)°.

In the crystal structure of (I), the molecules are linked bya $N\!-\!H\!\cdot\cdot\cdot\!Cl$ pairs of hydrogen bonds into а $C_{2}^{2}(8)C_{2}^{2}(8)[R_{2}^{2}(8)R_{2}^{2}(8)]$ chain of rings (Bernstein *et al.*, 1995) along the [001] direction. Atoms N1 and N2 in the molecule at (x, y, z) both act as hydrogen-bond donors to atoms Cl1 and Cl2 in the molecule at $(x, \frac{1}{2} - y, \frac{1}{2} + z)$ (Fig. 2). The molecules are linked by a pair of $C-H\cdots O$ and a pair of $C-H\cdots Cl$ hydrogen bonds into a chain of alternating $R_2^2(6)$ and $R_2^2(20)$ rings (García-Báez et al., 2002) along the [111] direction. Atoms C11 and C19 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O1 in the molecule at (2 - x,(1-y, 2-z) and atom Cl1 in the molecule at (1-x, -y, 1-z)(Fig. 3). The combination of the [111] chain and the [001] chain generates a $[1\overline{1}0]$ stack. Neighbouring stacks are connected by van der Waals forces, resulting in a threedimensional network structure (Fig. 4).

Experimental

To a solution containing N,N'-di(3,4-methylenedioxybenzyl)propane-1,3-diamine (3.42 g, 10 mmol) and ethanol–chloroform (1:1, 30 ml), a solution of zinc chloride (1.36 g, 10 mmol) and ethanol (10 ml) was added with stirring for 2 h at room temperature (298–300 K); the solid obtained was filtered off, washed successively with chloroform and ethanol, and dried at room temperature. Colourless crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of a DMF solution over a period of one week (m.p. 493– 495 K).

Crystal data

$ZnCl_2(C_{19}H_{22}N_2O_4)$]	Z = 4
$A_r = 478.66$	$D_x = 1.531 \text{ Mg m}^{-3}$
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 15.612 (4) Å	$\mu = 1.47 \text{ mm}^{-1}$
= 12.934 (3) Å	T = 298 (2) K
= 10.318 (3) Å	Block, colourless
$B = 94.557 (3)^{\circ}$	$0.42 \times 0.22 \times 0.15 \text{ mm}$
$V = 2076.9 (9) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector
diffractometer10572 measured reflections
3650 independent reflections
2705 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.029$
 $\theta_{max} = 25.0^{\circ}$
 $T_{min} = 0.578, T_{max} = 0.810$

Refinement

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.045 (2)	Zn1-Cl1	2.2007 (9)
Zn1-N2	2.065 (2)	Zn1-Cl2	2.2416 (9)
N1-Zn1-N2	97.17 (9)	C1-N1-Zn1	108.61 (17)
N1-Zn1-Cl1	115.73 (7)	C3-N2-Zn1	108.44 (17)
N2-Zn1-Cl1	118.10 (7)	N1-C1-C2	111.9 (2)
N1-Zn1-Cl2	108.80 (7)	C3-C2-C1	117.0 (3)
N2-Zn1-Cl2	104.66 (7)	N2-C3-C2	112.4 (2)
Cl1-Zn1-Cl2	111.05 (4)		
Cl2-Zn1-N1-C1	58.28 (19)	Cl1-Zn1-N2-C12	-61.55(19)
Cl1-Zn1-N1-C4	58.7 (2)	Cl2-Zn1-N2-C12	62.55 (19)
Cl2-Zn1-N1-C4	-67.1(2)	C4-N1-C1-C2	-173.4(2)
Cl2-Zn1-N2-C3	-62.45(18)	C12-N2-C3-C2	177.3 (2)
N1-Zn1-N2-C12	174.18 (19)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
N1-H1···Cl1 ⁱ	0.91	2.63	3.526 (3)	167
$N2-H2\cdots Cl2^{i}$	0.91	2.51	3.386 (3)	163
$C11-H11A\cdots O1^{ii}$	0.97	2.72	3.404 (5)	128
$C19-H19A\cdots Cl1^{iii}$	0.97	2.76	3.461 (4)	130
Compared and the contract of the contract on t	х <u>г</u> 1	1. (2)	1.2 1.1	1.0. ()

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y, -z + 1.

All H atoms were positioned geometrically and refined as riding on their parent atoms, with N-H = 0.91 Å, C-H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eg}$ (C,N).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Feinberg, H., Greenblatt, H. M., Behar, V., Gilon, C., Cohen, S., Bino, A. & Shoham, G. (1995). Acta Cryst. D51, 428–449.
- García-Báez, E. V., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2002). Cryst. Growth Des. 3, 34-45.
- Johansson, A. & Håkansson, M. (2004). Acta Cryst. E60, m955-m957.
- Otsuka, M., Fujita, M., Sugiura, Y., Yamamoto, T., Inoue, J., Maekawa, T. & Ishii, S. (1997). *Bioorg. Med. Chem.* 5, 205–215.
- Puccetti, L., Fasolis, G., Vullo, D., Chohan, Z. H., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3096–3101.
- Scozzafava, A., Menabuoni, L., Mincione, F., Mincione, G. & Supuran, C. T. (2001). Bioorg. Med. Chem. Lett. 11, 575–582.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, Q., Wang, Y.-T., Pu, S.-P. & Zheng, Y.-T. (2004). Biochem. Biophys. Res. Commun. 324, 605–610.
- You, Z.-L. (2005). Acta Cryst. C61, m383-m385.
- Zhang, J.-L., Wu, X.-J., Cao, X.-P., Yang, F., Wang, J.-F., Zhou, X. & Zhang, X.-L. (2003). *Bioorg. Med. Chem. Lett.* **13**, 1097–1100.